
1. Span and Linear Independence

Let V be a vector space with underlying field F. Recall that a vector space V is
a module over a ring - in this case, the ring is the field F.

Definition 1. Call a subset E ⊂ V independent if no finite nontrivial linear
combination of vectors is equal to the zero vector. That is, we cannot find e1, ..., en ∈
E and f1, ..., fn ∈ F, not all zero, such that f1e1 + ...+ fnen = 0.

Definition 2. If we have a set E ⊂ V , we define the span of E to be the set of
all f1e1 + ...+ fnen for which f1, ..., fn ∈ F and e1, ..., en ∈ E; that is, the set of all
linear combinations of elements of E.

We will define a basis of a vector space V to be any set E whose span is V , and
is independent. We claim that every vector space has a basis. The proof of this
will rely upon Zorn’s Lemma.

Theorem 1. Every vector space has a basis.

Proof.

• Consider the poset of all independent subsets of V ordered by inclusion.
• We will first show that there is a maximal such independent subset.
• Note that if a set of independent subsets is linearly ordered by inclusion,

then their union is also independent.
• The claim then follows from Zorn’s Lemma.
• To show that such a maximal independent set must be a basis, we proceed

by contradiction:
• If this is not true, there is some vector v that is not in the span.
• Adding this to the set gives us a larger independent set, contradicting

maximality.

�

A matroid is a structure that generalizes the notion of linear independence in
vector spaces.

We will talk a bit more about matroids next week.

2. Linear Transformations

Definition 3. Given two vector spaces V and W over a field Fb, recall that a
linear transformation, or homomorphism, T : V → W satisfies the following
two conditions:

• T (v1 + v2) = T (v1) + t(v2) for all v1, v2 ∈ V
• T (cv) = cT (v) for all v ∈ V and c ∈ F.

One thing to note is that this immediately extends to finite linear combinations
of vectors. Also observe that T (0) = 0.

We denote the set of all transformations from V to W by HomF(V, W ). In the
case that V = W , we denote this by End(V ), and in the case that all maps are
injective and surjective, we denote this by Aut(V ). When V = Fn for some natural
number n, we write HomF(Fn, Fn) = GLn(F).

Note that the determinant is the unique ring homomorphism between GLn(F)→
F×.
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3. Dual Spaces

Let R be a commutative ring. Then, given two R-modules M and N , we may
consider the set HomR(M, N) of all R-linear maps from M to N . With the usual
notions of addition and scaling, we may endow HomR(M, N) with a ring structure.
Definition: For a vector space V , we call V ∗ := HomF(V, F) its dual space.

Dual spaces are needed to discuss coordinate functions on vector spaces, formal-
ize notions of integration in functional analysis, classify linear transformations via
tensor products, and study tangent bundles of smooth manifolds.

Theorem 2. Given a finite dimensional vector space V , dim(V ) = dim(V ∗).

Proof. Choose a basis {v1, . . . , vn} of V , and consider the set {v1, . . . , vn} of V ∗,
where vi(vj) := δij is 1 if i = j and 0 otherwise. Of course, a linear transformation
is determined completely by the values of elements of a basis of its domain. So any
linear transformation f ∈ V ∗ satisfies

f(v) = f

(
n∑

i=1

aivi

)
=

n∑
i=1

aif(vi) =⇒ f =

n∑
i=1

aif(vi)v
i,

where v =
∑n

i=1 aivi is any element of V (ai ∈ F for each i ∈ {1, . . . , n}). Thus,
{v1, . . . , vn} spans V ∗. Further, given any nonzero f = a1v

1 + · · · + anv
n, some

ai is nonzero, so f(vi) 6= 0 implies f 6= 0. Therefore, {v1, . . . , vn} is linearly
independent. The result follows. �

Now, suppose V and W are vector spaces over F, and consider T ∈ HomF(V, W ).
Then, we wonder if we can create a natural correspondence somehow between T :
V →W and a linear transformation of V ∗ and W ∗. But given an element f ∈ V ∗,
f : V → Fb, if we wish to associate some g ∈ W ∗, g : W → Fb, the only way
to make function composition work is to map f 7→ f ◦ T−1. However, T−1 is not
always defined, so it turns out that the map suggested is T ∗ : W → V given by
g 7→ T ◦ g.

4. Free Vector Space

Given a set X and vector space V over field Fb, we may define the free space
V 〈X〉 ⊂ HomF(X, V ) such that all f ∈ V 〈X〉 satisfy f(x) = 0 for all but finitely
many x ∈ X. Addition and scalar multiplication are defined as usual.

A crucial example of the free space is a vector field. On a manifold, a vector field
is a mapping from the underlying set into the tangent bundle such that the natural
projection from the tangent space to the manifold composed with the vector field
is the identity.

For a specific example, we consider a set X of 5 points in R2
b and the usual vector

space R2. To each point, we assign a “direction”.
What does a basis look like? Consider the Dirac delta functions.
Let V be a vector space over F and X a set. Let δ : X → Fb〈X〉 be defined to

be δ(x) := δx. This is the Dirac map. It is injective but not linear.

Theorem 3. Let V be a vector space over a field F and X a set. If g : X → V is a
function, there exists a unique homomorphism ĝ : Fb〈X〉 → V such that g = ĝ ◦ δ.
Proof. Note that {δx}x∈X is a basis of F〈X〉 and so there exists a unique linear
transformation (homomorphism) F〈X〉 → V mapping δx 7→ g(x) for each x. �


