1. SPAN AND LINEAR INDEPENDENCE

Let V' be a vector space with underlying field F. Recall that a vector space V' is
a module over a ring - in this case, the ring is the field F.

Definition 1. Call a subset E C V independent if no finite nontrivial linear
combination of vectors is equal to the zero vector. That is, we cannot find ey, ..., e, €
E and f1,..., fn € F, not all zero, such that fie; + ... + fnen, = 0.

Definition 2. If we have a set E C V, we define the span of E to be the set of
all frey + ...+ fnen for which fi,...., fn € F and ey, ...,e, € E; that is, the set of all
linear combinations of elements of E.

We will define a basis of a vector space V' to be any set E whose span is V', and
is independent. We claim that every vector space has a basis. The proof of this
will rely upon Zorn’s Lemma.

Theorem 1. Every vector space has a basis.

Proof.

e Consider the poset of all independent subsets of V' ordered by inclusion.

e We will first show that there is a maximal such independent subset.

e Note that if a set of independent subsets is linearly ordered by inclusion,
then their union is also independent.

e The claim then follows from Zorn’s Lemma.

e To show that such a maximal independent set must be a basis, we proceed
by contradiction:

e If this is not true, there is some vector v that is not in the span.

e Adding this to the set gives us a larger independent set, contradicting
maximality.

O

A matroid is a structure that generalizes the notion of linear independence in
vector spaces.
We will talk a bit more about matroids next week.

2. LINEAR TRANSFORMATIONS

Definition 3. Given two vector spaces V. and W over a field Fy, recall that a
linear transformation, or homomorphism, T : V. — W satisfies the following
two conditions:

o T(vy +vy) =T(v1) + t(ve) for all vi,ve €V
e T(cv) =cT(v) for allv eV and c €F.

One thing to note is that this immediately extends to finite linear combinations
of vectors. Also observe that T'(0) = 0.

We denote the set of all transformations from V' to W by Homp(V, W). In the
case that V' = W, we denote this by End(V'), and in the case that all maps are
injective and surjective, we denote this by Aut(V). When V = F" for some natural
number n, we write Homp(F", F") = GL, (F).

Note that the determinant is the unique ring homomorphism between GL,,(F) —
Fx.



3. DUAL SPACES

Let R be a commutative ring. Then, given two R-modules M and N, we may
consider the set Homp(M, N) of all R-linear maps from M to N. With the usual
notions of addition and scaling, we may endow Hompg (M, N) with a ring structure.
Definition: For a vector space V', we call V* := Homg(V, F) its dual space.

Dual spaces are needed to discuss coordinate functions on vector spaces, formal-
ize notions of integration in functional analysis, classify linear transformations via
tensor products, and study tangent bundles of smooth manifolds.

Theorem 2. Given a finite dimensional vector space V, dim(V') = dim(V™*).

Proof. Choose a basis {vy,..., v,} of V, and consider the set {v!,..., v"} of V*,
where v*(v;) := §;; is 1 if i = j and 0 otherwise. Of course, a linear transformation
is determined completely by the values of elements of a basis of its domain. So any
linear transformation f € V* satisfies

flv)=1f (Z%‘W) = Zaif(vi) = f= Zaif(vi)vi7

where v = Y7 | a;v; is any element of V' (a; € F for each ¢ € {1,..., n}). Thus,
{vl,..., v"} spans V*. Further, given any nonzero f = ajv! + --- + a,v", some
a; is nonzero, so f(v;) # 0 implies f # 0. Therefore, {v! ..., v"} is linearly
independent. The result follows. (]

Now, suppose V and W are vector spaces over IF, and consider T' € Homg(V, W).
Then, we wonder if we can create a natural correspondence somehow between T :
V — W and a linear transformation of V* and W*. But given an element f € V*,
f V. = Fyp, if we wish to associate some g € W*, g : W — Fy, the only way
to make function composition work is to map f + f o T~!. However, T~! is not
always defined, so it turns out that the map suggested is T* : W — V given by
g—Tog.

4. FREE VECTOR SPACE

Given a set X and vector space V over field F,, we may define the free space
V(X) C Homp(X, V) such that all f € V(X) satisfy f(x) = 0 for all but finitely
many z € X. Addition and scalar multiplication are defined as usual.

A crucial example of the free space is a vector field. On a manifold, a vector field
is a mapping from the underlying set into the tangent bundle such that the natural
projection from the tangent space to the manifold composed with the vector field
is the identity.

For a specific example, we consider a set X of 5 points in R? and the usual vector
space R2. To each point, we assign a “direction”.

What does a basis look like? Consider the Dirac delta functions.

Let V be a vector space over F and X a set. Let § : X — Fp(X) be defined to
be §(x) := . This is the Dirac map. It is injective but not linear.

Theorem 3. Let V be a vector space over a field F and X a set. If g: X — V isa
function, there exists a unique homomorphism g : Fy(X) — V such that g =g o 0.

Proof. Note that {d.},.y is a basis of F(X) and so there exists a unique linear
transformation (homomorphism) F(X) — V mapping §, — g(z) for each x. O



